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Abstract. We consider problems of vector optimization with preferences that are not necessarily
a pre-order relation. We introduce the class of functions which can serve for a scalarization of
these problems and consider a scalar duality based on recently developed methods for non-linear
penalization scalar problems with a single constraint.
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1. Introduction

Problems of vector (multi-criteria) optimization arise when there are some differ-
ent criteria for the choice of a preferable object. As a rule it is assumed that the
totality of these criteria forms a pre-order relation. The theory of vector optimiza-
tion with respect to (w.r.t.) pre-order relation is well developed (see, for example,
[5, 11]). However, often we get preferences that form a relation, which is not a
pre-order. Let us give some simple examples. Assume that we have m>1 crite-
ria (objective functions) f1�����fm defined on a set X. Each element x∈X can be
estimated by a vector of numbers �f1�x	�����fm�x		. Usually it is assumed that x
is more preferable that y�x�y	 if fi�x	�fi�y	 for all i∈ I=
1�����m�. Clearly �
is a pre-order relation. However, sometimes we need different kind of prefer-
ences, which are either weaker or stronger than �. For example, let m>2 and
I1=
2�����m�, Im=
1�����m−1�. Consider preferences �1 defined in the follow-
ing way: x�1 y if either fi�x	�fi�y	 for i∈ I1 or fi�x	�fi�y	 for i∈ Im. The
preferences �1 are weaker than � (i.e. x�y implies x�1 y) and these preferences
are not transitive, so �1 is not a pre-order relation. Consider now another prefer-
ences �2. We say that x�2 y if fi�x	�fi�y	 for all i∈ I and either f1�x	−f1�y	�
f2�x	−f2�y	 or f2�x	−f2�y	�f3�x	−f3�y	. Clearly �2 is stronger than �
and �2 is not a pre-order relation. Both relations �1 �i=1�2	 have the following
structure: x�i y means that the vector �f1�x	−f1�y	�����fm�x	−fm�y		 belongs
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to a conic set Ki. This set can be represented as the union of two convex cones,
however Ki itself is not a convex cone.
Note that preferences that are not pre-order relations have been studied in

mathematical economics (see for example, [6] and references therein).
In this paper we study the class of preferences that are defined by means the

so-called strongly star-shaped conic sets in a Banach space X. This is a large
class of preferences that can be successfully examined. The simplest example of a
strongly star-shaped conic set is the union K of a finite number of convex closed
cones Ki�i∈ I	 such that the intersection

⋂
i∈I intKi is not empty. Each strongly

star-shaped set K determines the relation �K on X, where x�y⇐⇒x−y∈K.
If K is not convex the �K is not a pre-order relation.
The relation �K generates different types of minimality. We restrict ourselves

by weakly minimal, minimal and properly minimal points. The examination
of various types of minimal points is the subject of vector optimization. One of
the most popular approaches in vector optimization is to use a scalarization of
preferences. We suggest a certain class of functions that provide a scalarization
of relations �K . (Sublinear functions from the this class have been studied before
(see, for example [5, 7]. They can be used for description of pre-order relations
generated by convex cones.) We study properties of functions from this class
and provide some examples. Using this class we construct scalar optimization
problems such that weakly minimal points, minimal points and properly minimal
points can be completely described as solutions of these problems. Duality for
these scalar optimization problems can be considered as a certain scalar duality
for the initial problem of vector optimization. We discuss this form of the duality
and give sufficient conditions for the validness of the zero duality gap property.
Different approaches to vector optimization duality can be found in literature.

In particular, some authors (see, for example [3, 4]) suggest to formulate a dual
problem for a vector optimization problem as also a problem of vector optimiza-
tion. In such a case the dual problem is in a certain sense symmetrical to a primal
one. However, the proposed scalar duality is much simpler than vector one.
The paper has the following structure. In Section 2 we provide some brief

preliminary definitions and results related to strongly star-shaped conic sets. Func-
tions pu�K that serve for a scalarization of the relation �K are introduced and
studied in Section 3. Some examples of these functions are given in Section 4.
Weakly minimal, minimal and properly minimal points and their characteriza-
tion by means of functions pu�K are examined in Section 5. Pre-order relations
generated by convex cones are considered in Section 6. Scalarization of vector
optimization problems presented in Section 7. Scalar duality for these problems
is defined and examined in Section 7.

2. Preliminaries

Let X be a Banach space and K⊂X. We denote by intK, bdK, clK the interior
of K, the boundary of K and the closure of K, respectively. For each x∈X
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denote by Rx the ray starting at zero and going through x� Rx=
�x� ��0�. The
following definition (see, for example [8]) plays a key role in the sequel. A set K
is called strongly star-shaped if there exists a point u∈ intK such that the ray
u+Rx does not intersect the boundary bdK of the set K more than once for
each x∈X. The set all points u, which enjoy this property is denoted by kern∗K
(see, for example, [8]). Thus, if u∈kern∗K then for each x, the ray u+Rx either
intersect the boundary of K once or does not intersect this boundary. The latter
means that u+Rx⊂ intK.
A set K⊂X is called star-shaped if there exists a point u∈K such that �u+

�1−�	x∈K for all x∈K and �∈�0�1	. The set of all points u which posses
this property is denoted by kernK. A strongly star-shaped set is star-shaped and
kern∗K⊂kernK. This fact is well-known. Its proof for finite-dimensional case
can be found for example in [8], however this proof is valid for an arbitrary
Banach space.
The set K is called radiative, if 0∈kern∗K. The main tool for the examination

of a radiative set K is its Minkowski gauge �K . By definition

�K�x	= inf
�>0� x∈�K��

The following result holds:

THEOREM 2.1. If K is a radiative set then its Minkowski gauge �K is
continuous.

A proof can be found, for example in [8], Proposition 5.10. Only finite dimen-
sional situation was considered in [8], however this proof holds for Banach
spaces.
If K is a closed radiative set then K=
x� �K�x	�1�. Since �K is continuous

and �K�0	=0 it follows that 0∈ intK.
Consider a strongly star-shaped set K. If u∈kern∗K then the set K−u is

radiative, hence 0∈ int�K−u	. As it follows from the definition, kern∗K⊂ intK.
Recall that a set K⊂X is called conic if x∈K
⇒�Rx \
0�	⊂K. Let K be a

conic strongly star-shaped set. It is easy to check that the set kern∗K is a conic set.
Denote by U�K	 the set of points u∈K, which possess the following properties:

(1) u∈kern∗K;
(2) for each x∈X the line x+
�u� �∈�� is not contained in K.

It is easy to check that the set U�K	 is conic. We now give some examples. If K
is a convex one, K �=X and intK is nonempty, then kern∗K=U�K	= intK. If
K=X, then kern∗K=X, however U�K	=∅. We shall show (see Corollary 4.1)
that the set U�K	 is nonempty if K is a finite union of convex cones Ki such that
the intersection

⋂
i intKi is nonempty.

Denote by ��X	 the set of all conic closed sets K⊂X with non empty U�K	.
Let K∈��X	. A conic set K generates the relation �K . By definition x�K y
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⇒x−y∈K. If K is a convex cone then �K is a pre-order relation. We say
that x is greater than y and write x>K y if x−y∈K\
0�. We write x�K y if
x−y∈K.
We now indicate some properties of the relation �K for K∈��X	.

PROPOSITION 2.1. Let u∈U�K	. Then

�1	 �x+�u∈K for each x∈K and �>0, �>0.
�2	 For each x∈X there exist �>0 and ��0 such that x�K �u and x�K �u.
�3	 for each x∈X the set �x=
�∈�� �u�K x� is a closed segment of the form

��x�+�	 with �x>−�.

Proof. (1) We prove a stronger assertion: if K is a star-shaped conic set and
u∈kernK, then �x+�u∈K for each x∈K and �>0, �>0. First assume that
�=1. Let x∈K and �>0. Let �= 1

1+�
. Since u∈kernK it follows that ��x	+

�1−�	u∈K, hence x+ 1−�
�
u=x+�u∈K. Since K is a conic set, we can easily

extend this result for an arbitrary �>0.
(2) Let x∈X. Since u∈ intK it follows that there exists �>0 such that u−�x∈K

and u+�x∈K. Let �=1/�, then �u−x∈K and �u+x∈K hence x�K �u
and x�K �−�	u.

(3) Let x∈X. Due to (2) the set �x is nonempty. Let �∈�x and �>�. We
have �u−x=��−�	u+��u−x	. Since �u−x∈K and �−�>0, we can
apply item (1) of this proposition, which shows that �u−x∈K. We have
demonstrated that ��∈�x��>�	
⇒�∈�x. It follows from this that �x

is unbounded from above segment. Since K is closed it follows that the
segment �x is closed. Due to the definition of U�K	, we conclude that the
line x+
�u� �∈� does not lie in K. It implies that the set �x is bounded
from below. �

3. Functions pu�K and their Properties

Let �̄ be the extended real line: �̄=�∪
+��∪
−��. A function p� X→�̄ is
called positively homogeneous if p��x	=�p�x	 for all x∈X and �>0.
For an arbitrary conic set K and u∈K define the function pu�K� X→�̄ by

setting

pu�K�x	= inf
�∈�� �u−x∈K�� (3.1)

where the infimum over the empty set is equal to +�. It is easy to see that pu�K

is positively homogeneous.
If K∈��X	 and u∈U�K	 then the function pu�K enjoys some good properties.

In such a case pu�K�x	=�x, where �x is the left end-point of the segment �x

from Proposition 2.1 (3), hence pu�K is finite, also the infimum in (3.1) is attained:
pu�K�x	=min
�� �u−x∈K�. The latter implies the inclusion pu�K�x	u−x∈K.
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The following properties of the function pu�K defined by (3.1) will be useful in
the sequel.

PROPOSITION 3.1. Let K∈�. Then:

pu�K�x+�u	=pu�K�x	+�� x∈X� �∈�� (3.2)

and


x� pu�K�x	���=�u−K� �∈�� (3.3)

Proof.

(1) Let x∈X and �∈�. For �∈� denote ��=�−�. We have

pu�K�x+�u	=min
�∈�� �u−�x−�u	∈K�

=min
��+�� ��∈����u−x∈K�

=�+min
��∈�� ��u−x∈K�=�+pu�K�x	�

(2) Let x∈�u−K and k=�u−x. Then k∈K. We have

pu�K�x	=min
�� x��u�=min
�� �u−k��u�

=min
�� −k���−�	u�

=�+min
�′� −k��′u��

Since −k�0 ·u it follows that pu�K�x	��. Assume now that pu�K�x	��. Then
min
�� x�K �u���. It follows from Proposition 2.1 (3) that x�K �u. �

We also need the following simple assertion.

PROPOSITION 3.2. Let K∈��X	 and K\
0�⊂ intL, where L is a conic set.
Let u∈U�K	. Then pu�K�x	<pu�L�x	 for all x �=cu with c∈�.

Proof. Let x �=cu with c∈�. Consider the point y=pu�K�x	u−x. Then y �=0.
It follows from Proposition 2.1 (3) that y∈K. Since K\
0�⊂ intL, we can find
�>0 such that �pu�K�x	−�	u−x∈L. This means that pu�L�x	<pu�K�x	. �

For each !∈� consider the upper level set M!=
x� pu�K�x	�!� of the func-
tion pu�K . Clearly

⋃
!∈�M!=X and M!2⊂M!1 if !1<!2. Due to (3.2) we have

M!=
x� pu�K�x−!u	�0��

It follows from the definition of kern∗K and U�K	 that the set K−u is radiative
for all u∈U�K	, hence we can consider the Minkowski gauge of this set.

PROPOSITION 3.3. Let !∈�. Then pu�K�x−!u	=�K−u�−�x−!u		 for all x∈
M!, where �K−u is the Minkowski gauge of the set K−u.
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Proof. Let x∈M!. Since pu�K�x−!u	�0 and

pu�K�x−!u	= inf
�∈�� �u−�x−!u	∈K�

it follows that

pu�K�x−!u	= inf
�>0� �u−�x−!u	∈K�

We have

�K−u�!u−x	= inf
�>0� !u−x∈��K−u	�= inf
{
�>0�

!u−x

�
∈K−u

}

= inf
{
�>0�

!u−x

�
+u∈K

}
= inf
�>0� �u−�x−!u	∈K�

=pu�K�x−!u	�

COROLLARY 3.1. The function pu�K is continuous.
Proof. It follows from Proposition 3.3 and Theorem 2.1. �

We now show that each continuous positively homogeneous function, for which
there exists an element u∈X such that

p�x+�u	=p�x	+�� x∈X� �∈�� (3.4)

can be presented in the form pu�K with some K.

THEOREM 3.1. Let p be a continuous positively homogeneous function such
that (3.4) holds for some u∈X. Let

K=
−x� p�x	�0�� (3.5)

Then u∈U�K	 and p=pu�K .
Proof. Let K be defined by (3.5). Since p is positively homogeneous it follows

that K is a conic set. Since p is continuous it follows that the set K is closed.
We have −K=
x� p�x	�0�. The interior int�−K	 of this set coincides with

x� p�x	<0�. Indeed, the set 
x� p�x	<0� is open, hence this set is contained
in int�−K	. Let x∈ int�−K	. Then x+�u∈−K for a small enough �>0. Hence
p�x+�u	=p�x	+��0, so p�x	<0. It follows from aforesaid that bd�−K	=

x� p�−x	=0�. Let us show that −u∈kern∗�−K	. Indeed, let x∈X and y∈
−u+Rx. Then there exists t�0 such that y=−u+tx. A point y belongs to the
boundary of −K if and only if

p�y	=p�−u+tx	=−1+p�tx	=−1+tp�x	=0�

If p�x	 �=0 then there is the unique t such this holds (the ray −u+�x intersects
the boundary once). The case p�x	=0 leads to the equality −1=0, which means
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that case is impossible (the ray −u+Rx does not intersect the boundary). Thus,
the ray −u+Rx does not intersect the boundary bd�−K	 more than once: −u∈
kern∗�−K	. This implies u∈kern∗K. We now show that the line Lx=x+
�u� u∈
�� is not located in K. Indeed, if Lx⊂K then for each �∈� we have p��u+x	=
�p�x	�0, which is impossible. We have demonstrated that u∈U�K	.
Since u∈U�K	, we can define the function pu�K . We now check that p=pu�K .

Indeed

pu�K�x	=min
�� �u−x∈K�=min
�� x−�u∈−K�

=min
�� p�x−�u	�0�=min
�� p�x	−��0�

=min
�� p�x	���=p�x	� �

Remark 3.1. Condition (3.4) have been used in the literature for the definition
of topical functions (see for example, [9] and references therein).

Let u∈X. Denote the set of all continuous positively homogeneous functions
p� X→� such that (3.4) holds with the given u by �u. We have checked that
each function p∈�u has the form p=pu�K with a conic set K such that K∈��X	
and u∈U�K	. We now describe some properties of the set �u.

PROPOSITION 3.4. The set �u possess the following properties:

�1	 �u is convex;
�2	 �u is a lattice with respect to the pointwise order relation, that is the functions

p̄�x	=maxi=1�����mpi�x	 and p�x	=mini=1�����mpi�x	 belong to �u, if p1�����pm

belong to �u;
�3	 �u is closed w.r.t uniform convergence.

We omit the simple proof of this proposition.
Let K∈��X	. Denote by CK the complement to the cone intK� CK=
x∈

X� x� intK�. If u∈U�K	 then intK=
x∈X%pu�K�−x	<0�, hence CK=
x∈
X� pu�K�−x	�0�. It is easy to check that intCK=
x∈X� pu�K�−x	>0�.
Let u∈U�K	 and �x=
�∈�� �u−x∈K�. Then due to Proposition 2.1 there

exists a number �x such that �x= ��x�+�	. We have pu�K�x	=�x. This implies
the following:

sup
�� �u−x∈CK�=sup
�� �u−x�K�

= inf
�� �u−x∈K�=pu�K�x	� (3.6)

PROPOSITION 3.5. Let u∈U�K	. Then p−u�CK=−pu�K .
Proof. Applying (3.6) we conclude that

pu�K�x	= sup
�� �u−x∈CK�=sup
−�� −�u−x∈CK�

=− inf
�� −�u−x∈CK�=−inf
�� ��−u	−x∈CK�

=−p−u�CK�x	� �
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Consider now the conic set −K.

PROPOSITION 3.6. If K∈��X	 then −K∈��X	 and U�−K	=−U�K	.
Proof. Since u+�x∈K⇐⇒−u+��−x	∈�−K	 it follows that kern∗�−K	=

−kern∗K. Clearly the line x+
�u� �∈�� is not contained in K if and only if the
line −x+
��−u	� �∈�� is not contained in −K. This the result follows. �

COROLLARY 3.2. We have U�−K	⊂U�CK	. Indeed, if −u∈U�−K	 then
u∈U�K	. Applying Proposition 3.5 and Theorem 3.1 we conclude that u∈
U�CK	.

4. Examples

First we give an example of a conic set K∈��X	, which is non-convex. For this
purpose we prove the following assertion.

PROPOSITION 4.1. Let Ki∈��X	, i=1�����m and
⋂m

i=1U�Ki	 �=∅. Let K=⋃
iKi. Then K∈��X	 and

m⋂
i=1

U�Ki	⊂U�K	�

If u∈⋂m
i=1U�Ki	 then pu�K�x	=minipu�Ki

�x	.
Proof. Let u∈⋂m

i=1U�Ki	. Consider an element x∈X and sets

�i
x=
�� �u−x∈Ki�� i=1�����m� �x=
�� �u−x∈K��

Note that �i
x= �pu�Ki

�x	�+�	. It is easy to check that

�x=
⋃
i

�i
x� (4.1)

Indeed, if �∈�x, then �u−x∈K hence there exists i such that �u−x∈Ki, hence
�∈⋃i�

i
x. The same argument shows that the opposite inclusion holds. Consider

the function p=pu�K defined by (3.1). It follows from (4.1) that

p�x	=pu�K�x	=min
�� �∈�x�=min
{
�� �∈⋃

i

�i
x

}
=min

i
pu�Ki

�x	�

The function p is positively homogeneous and continuous as the minimum of
positively homogeneous continuous functions. We also have

p�x+�u	=min
i

pu�Ki
�x+�u	=min

i
��+pu�Ki

�x		=�+p�x	�
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Thus p possesses the property (3.4). Note that

−K=⋃
i

�−Ki	=
⋃
i


x� pu�Ki
�x	�0�={

x� min
i

pu�Ki
�x	�0

}
�

Thus

K=
−x� p�x	�0��

It follows from the aforesaid and Theorem 3.1 that K∈��X	 and u∈U�K	. �

COROLLARY 4.1. Let Ki, i=1�����m be convex closed comes such that⋂m
i=1 intKi is nonempty. Then

⋃m
i=1Ki∈��X	.

Let Ki, i=1�����m be convex closed cones. The cone Ki generates the order
relation �Ki

. The relation �K , which is generated by the cone K, admits the
following interpretation: x�K y if and only if there exists i∈
1�����m� such that
x�Ki

y. Clearly �K is not a pre-order relation, if
⋃

iKi is not convex.

We now give some examples of the functions pu�K .

EXAMPLE 4.1. Let C�T	 be a space of continuous functions defined on a
compact topological space T . Let K be the closed convex cone of nonnegative
functions:

K=
x∈C�Q	� x�t	�0 for all t∈T�={
x∈C�Q	� min

t∈T
x�t	�0

}
�

Then intK=
x∈K� x�t	>0� for all t∈T . Let u∈ intK. Then

pu�K�x	=min
�� �u�t	�x�t	 ∀t∈T�

=min
{
�� ��max

t∈T
x�t	

u�t	

}
=max

t∈T
x�t	

u�t	
�

In particular, if u�t	=1 for all t∈T , then pu�K�x	=maxt∈T x�t	.

EXAMPLE 4.2. Let X=�n, K coincides with the cone �n
+ of vectors with

nonnegative coordinates. Then for each u=�u1�����un	 with ui>0, i=1�����n,
we have:

pu�K�x	= max
i=1�����n

xi

ui

�

It follows from the previous example, since �n=C�T	 with T =
1�����n�.
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EXAMPLE 4.3. Let X=C�T	 and let K⊂C�T	 be the set of all functions x
such that maxt∈T x�t	�0 (in other words, the complement of K consists of all
negative functions). The set K is not convex. Let u�t	>0 for all t. Then

pu�K�x	=min
�� there exists t∈T such that �u�t	−x�t	�0�

=min
{
�� there exists t∈T such that ��

x�t	

u�t	

}

=min
{
�� ��min

t∈T
x�t	

u�t	

}
=min

t∈T
x�t	

u�t	
�

We can obtain the same result using Proposition 3.5 and the fact that K=CL,
where L=
x� maxi∈T x�t	�0�.
Let T =
1�����n�. Then C�T	=�n, K=
x=�x1�����xn	� maxi xi�0�. If u∈

int�n
+ then

pu�K= min
i=1�����n

xi

ui

�

EXAMPLE 4.4. Let X be a normed space and p� X→� be a sublinear (that is,
positively homogeneous and convex) function. Then the epigraph

epip=
�x��	∈X×�� ��p�x	�

is a closed convex cone. It is easy to check that the point u=�0�1	 belongs to
the interior of K. Let us calculate pu�K . We have

pu�K�x��	= inf
�� ��0�1	−�x��	∈K�= inf
�� �−x��−�	∈K�

= inf
�� �−��p�−x	= inf
�� ���+p�−x	�=�+p�−x	�

Consider now m sublinear functions p1�����pm. Let K=⋃m
i=1 epipi. Since u=

�0�1	∈⋂m
i=1 int epipi, we can apply Proposition 4.1. Due to this Proposition

pu�K�x��	= min
i=1�����m

��+pi�−x		=�+ min
i=1�����m

pi�x	�

EXAMPLE 4.5. Consider the space �n with n�2. We now define two families
of convex closed cones: �K�	0��� 1

n
and �L�	0��� 1

n
. Let 0��<1/n and let

a�=1−�n−1	� Consider the n×n matrix

A�=



a� � ��� �
� a� ��� �
· · ��� ·
� � ��� a�



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An easy calculation shows that there exists the matrix A−1
� �=B� and

B�=



b� -� ��� -�

-� b� ��� -�

· · ��� ·
-� -� ��� b�


�

where

b�=
1−�

1−n�
� -�=− �

1−n�

Consider close convex cones L�=A���
n
+	�K

�=B���
n
+	. If �=0 then L�=

K�=�n
+.

Let 1=�1�����1	, then
∑n

i=1xi coincides with the inner product �1�x. of
vectors 1 and x. An easy calculation shows that

L�={
y=�1−n�	x+��x�1.1� x∈�n

+
}

intL�={
y=�1−n�	x+��x�1.1� x∈ int�n

+
}
�

K�=
{
z= 1

1−n�
�x−��1�x.1� x∈�n

+

}

intK�=
{
z= 1

1−n�
�x−��1�x.1� x∈ int�n

+

}
�

Using this formulae, we can check the following:

(1) L�⊂ int�n
+∪
0� for each �∈�0�1/n	.

(2) 0<�1<�2<1/n
⇒L�1 ⊂L�2 ;
(3)

⋃
�>0L

�= int�n
+.

(4) intK�⊃�n
+\
0� for each �>0;

(5) 0<�2<�1<1/n
⇒K�1 ⊂K�2 ;
(6)

⋂
�>0K

�=�n
+.

It follows from items (4)–(6) that for each convex closed coneK with intK∪
0�⊃
�n

+ there exists �>0 such intK∪
0�⊃K�.
We now calculate functions pu�L� for u∈ intL� and pu�K� for u∈ intK�.
Denote the coordinate-wise order relation by �. It follows from the equality

L�=A���
n
+	 that x∈L� is equivalent to B�x�0. Since

�B�x	i=
1

1−n�
�xi−��1�x.	
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we have for u∈ intL� and x∈�n:

pu�L��x	= inf
�� �u−x∈L��= inf
�� B���u−x	�0� (4.2)

= inf
�� �B�u�B�x�= inf
�� ��B�u	i��B�x	i� i=1�����n�

= max
i=1�����n

�B�x	i
�B�u	i

= max
i=1�����n

xi−��1�x.
ui−��1�u.

� (4.3)

In the same manner the equality K�=B���
n
+	 implies the equivalence of

x∈K�⇐⇒A��0. Since

�A�x	i=�1−n�	xi+��1�x.

we have for u∈ intK� and x∈�n:

pu�K��x	= inf
�� �u−x∈K��= inf
�� A���u−x	�0� (4.4)

= inf
�� �A�u�A�x�= inf
�� ��A�u	i��A�x	i� i=1�����n�

= max
i=1�����n

�A�x	i
�A�u	i

= max
i=1�����n

�1−n�	xi+��1�x.
�1−n�	ui+��1�u.

� (4.5)

5. Characterization of Minimal Points

Let K∈��X	. We need the following definitions

DEFINITION 5.1. Let S be a closed subset X. Then

(1) A point s̄∈S is called a weakly minimal point w.r.t K if �s̄−intK	∩S=∅.
(2) A point s̄∈S is called minimal w.r.t K if �s̄−K	∩S=
s̄�.
(3) A point s̄ is called proper minimal if there exists a closed conic set L∈��X	

such that intL⊃K\
0�, U�L	⊃U�K	 and s̄ is a minimal point of S w.r.t. L.

Definition of weakly minimal (minimal, respectively) points coincide with
classical definition of weakly Pareto-optimal (Pareto-optimal, respectively) points.
Properly minimal points also well-known in literature. They were introduced by
M. Henig in [2].
If S is an arbitrary subset of X then by definition, the sets of weakly minimal

points of S, minimal points of S and properly minimal points of S coincide with
the corresponding sets for the closure clS of the set S; so in the sequel we shall
consider only closed sets S.
We use the following notation: W−MinKS is the set of weakly minimal points

of S, MinKS is the set of minimal points of S and P−MinKS is the set of properly
minimal points of S.
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PROPOSITION 5.1. Let K∈��X	, S be a closed subset of X and s̄∈S. Then

�1	 s̄∈W−MinKS if and only if there exists z∈X such that u�=z+ s̄∈U�K	
and s̄ is a solution of the problem

minpu�K�z+s	 subject to s∈S� (5.1)

�2	 s̄∈MinKS if and only if there exists z∈X such that u�=z+ s̄∈U�K	 and the
problem (5.1) has the unique solution z+ s̄.

Proof. We prove only item (2) of Proposition. The proof of the item (1) is
similar. Let s̄ be a minimal point of the set S. Let z∈−s̄+U�K	. Then u�=z+ s̄∈
U�K	. Consider the functional pu�K . It follows from Proposition 3.1 (see 3.3) that
u−K=
x� pu�K�x	�1�. Let Sz=z+S. Then u is a minimal element of Sz, that
is �u−K	∩Sz=
u�. It follows from aforesaid that pu�K�sz	>1=pu�K�u	 for all
sz∈Sz\
z+ s̄�. Hence

pu�K�z+s	>pu�K�z+ s̄	� s∈S\
s̄��
Assume now that a vector z∈X enjoy the following properties: u=z+ s̄∈U�K	
and pu�K�z+s	>pu�K�z+ s̄	=1 for all s∈S, s �= s̄. It follows from (3.3) that
u−K=
x� pu�K�x	�1�, hence z+ s̄ is a minimal element of z+S. Clearly s̄ is a
minimal element of S. Thus the result follows. �

PROPOSITION 5.2. Let K∈��X	, S be a closed subset of X and s̄∈S. Then
the following assertions are equivalent.

(i) s̄∈W−MinKS.
(ii) for each u∈U�K	 it holds that

min
s∈S

pu�K�s̄−s	=0� (5.2)

(iii) there exists u∈K�U	 such that (5.2) holds.

Proof. �i	
⇒�ii	. By definition, s̄ is a weakly minimal point if and only if
for all s∈S we have s̄−s∈X\intK. The latter can be expressed in the form
s̄−s∈CK. Let u∈U�K	. Then due to Corollary 3.2 −u∈U�CK	. We have also
p−u�CK�s̄−s	�0. Applying Proposition we conclude that pu�K�s̄−s	�0. Thus
s̄−s is a solution of the problem (5.2).
�ii	
⇒�iii	 is trivial.
�iii	
⇒�i	. Let ∈U�K	 be a vector such that pu�K�s̄−s	�0 for all s∈S. Then

p−u�CK�s̄−s	�0 for all s∈S, hence s̄−S⊂CK. This means that �s̄−S	∩intK
is empty. �

PROPOSITION 5.3. Let K∈��X	, S be a closed subset of X and s̄∈S. Then
the following assertions are equivalent:

(i) s̄∈MinKS.
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(ii) for each u∈U�K	 we have

pu�K�s̄−s	>0 s∈S� s �= s̄� (5.3)

(iii) there exists u∈U�K	 such that (5.3) holds.

Proof. The proof is similar to that of Proposition 5.2 and we omit it. �

We now turn to properly minimal points of S. Denote by ��K	 the collection
of all conic sets L∈��X	 such that intL⊃K\
0� and U�L	⊃U�K	.

PROPOSITION 5.4. Let K∈��X	, S be a closed subset of X and s̄∈S. Then
s̄∈P−MinKS if and only if there exist a conic set L∈��K	 and an element
z∈X, which enjoy properties: u�=z+ s̄∈U�K	 and s̄ is a solution of problem

minpu�L�s	 subject to s∈S� (5.4)

Proof. Let s̄ be a proper minimal point of the set S. Then there exists L∈��K	
such that s̄ is minimal element of S w.r.t L. Since U�K	⊂U�L	 we have pu�L∈�u

if u∈U�K	. Taking z∈−s̄+U�K	 and repeating the proof of Proposition 5.1 we
conclude that s̄ is a solution of (5.4).
Consider now s̄∈S, L∈��K	 and z∈X such that u=z+ s̄∈U�K	 and

1=pu�L�u	= min
s∈z+S

pu�L�s	� (5.5)

It follows from the definition of ��K	 that u∈U�L	 so pu�L∈�u.
We have 
x� pu�L�x	�1�=u−L. Since intL⊃K\
0� we have pu�K�x	<1

for all x∈K. Let p=�1/2	�pu�K+pu�L	. The set �u is convex so p∈�u. We
have p�x+�u	=p�x	+� for all x∈X and �∈�. Let L′ =−
x∈X� p�x	�0�.
Due to Theorem 3.1 we conclude that L′ ∈��K	, u∈U�L′	 and p=pu�L′ . Let
x∈−K, x �=0. Then pu�K�x	�0 and pu�L�x	<0, hence p�x	=pu�L′�x	<0. This
means that intL′ ⊃K\
0�. It follows from Proposition 3.2 that pu�L�x	<pu�K�x	
for all x �=cu with c∈�. Since p�x	=�1/2	�pu�L�x	+pu�K�x	�0 for x∈X it
follows that pu�L�x	<0 for all x∈L′, x �=cu. Let cu∈−L′, cu �=0. Then c<0
so pu�L′�cu	=c<0. Hence pu�L′�x	<0 for all x∈−L′, x �=0. Due to (5.5) we
conclude that �z+ s̄−L′	∩�z+S	=
z+ s̄�. This means that z+ s̄ is a minimal
element of z+S w.r.t L′. It follows from this result that s̄ is a proper minimal
element of S w.r.t. K. �

PROPOSITION 5.5. Let K∈��X	, S be a closed subset of X and s̄∈S. Then
the following assertions are equivalent:

(i) s̄∈MinKS.
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(ii) there exists a conic set L∈��K	 such that for each u∈U�K	 we have

min
s∈S

pu�L�s̄−s	>0 s∈S� s �= s̄� (5.6)

(iii) there exist a conic set L∈��K	 and an element u∈U�K	 such that
(5.6) holds.

The proof is similar to that of Proposition 5.2 and we omit it. �

Let K∈��X	. Denote by �0�K	 a collection of closed sets L∈��K	 such that
for each L∈��K	 there exists L′ ∈�0�K	 with the property L′ ⊂L. Clearly a
point s̄ of a set S⊂X is a proper minimal point of this set w.r.t. K∈��X	 if and
only if there exists L∈�0�K	 such that s̄ is a minimal point of S w.r.t. L. We can
use only cones from the family �0�K	 in Proposition 5.4 and Proposition 5.2.

EXAMPLE 5.1. Let X=�n, K=�n
+. Consider a set S⊂X, which is bounded

from below. This means that there exists x∈�n such that s�x for all s∈S.
By adding a big enough vector x we can shift S to the interior int�n

+ of the
cone �n

+. We assume that the set S itself is located in int�n
+. In such a case

the zero can be chosen as an element z in Proposition 5.4. Consider the family
�0�K	=�K�	0<�< 1

n
, where K� is the cone from Example 4.5. It follows from

Proposition 5.4 that a point u∈S is a proper minimal point of S if and only if
there exist �>0 such that u is a solution of the problem

minpu�K��s	 subject to s∈S� (5.7)

It follows from (4.5) that (5.7) can be presented in the form

min max
i=1�����n

�1−n�	si+��1�s.
�1−n�	ui+��1�u.

subject to s∈S�

6. Minimal Points w.r.t. Convex Cones

Characteristics of different types of minimal points become simpler in the case
of convex cones K.
Let K⊂X be a convex closed cone. Then K∈��X	 if intK is non empty. If

K∈��X	 then U�K	= intK. It is easy to see that the function pu�K is sublinear
for each u∈ intK. Let p∈�u and −K=
x� p�x	�0�. Then K is convex if and
only if p is sublinear. The functions pu�K with convex K have been studied by
A. Rubinov [7] and D.T. Luc [5].
Denote by � the set of all continuous sublinear functions defined on X and

such that there exists a point x∈X for which p�x	<0.

PROPOSITION 6.1. Let p∈� be a function such that p�x	�0 for all x∈−K.
Then

(1) p is increasing with respect to K� x�K y
⇒p�x	�p�y	.
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(2) p�x	<0 for x∈ intK.
(3) if p�x	<0 for all x∈−K\
0�, then p is strictly increasing: x>K y
⇒

p�x	>p�y	.

Proof. Let x�K y, that is y=x+k where k∈−K. Then p�y	�p�x	+p�k	�
p�x	. The same argument shows that the second and third parts of proposition
hold. �

Remark 6.1. If K is not convex then the inequality pu�K�x	�pu�K�y	 does not
necessarily hold if x�K y.

Let S be a closed subset of X and s̄∈S. In Section 5 we gave necessary
and sufficient conditions for either weak minimality or minimality or proper
minimality of s̄ in terms of functions which depends on s̄. If K is convex then
sufficient conditions of weak minimality, minimality and proper minimality can
be easily done in terms of functions p∈� that does not depend on the point s̄.

PROPOSITION 6.2. Let K⊂X be a convex closed cone in a Banach space X,
S be a closed subset X and s∈S. Let p∈� be a function such that p�x	�0 for
all x∈−K. Then

(1) if p�s̄	=min
p�s	� s∈S� then s̄∈W−MinKS.
(2) if p�s̄	<p�s	 for all s∈S, s �= s̄ then s̄∈MinKS.
(3) if p�x	<0 for all x∈K\
0� and p�s̄	=min
p�s	� s∈S� then s̄∈P−MinKS.

Proof. (1) It follows from Proposition 6.1 that p�u	<0 for u∈ intK. Let x∈
s̄−intK, then x= s̄+u with u∈−intK, hence p�x	�p�s̄	+p�u	<p�s̄	. This
means that x�S. Thus s̄ is a weakly minimal point.
(2) Let x= s̄−u with u∈−K. Then p�x	�p�s̄	+p�−u	�p�s̄	. Hence S∩

�s̄−K	=
s̄� and s̄∈MinKS.
(3) Let L=
x� p�x	�0�. Since p�x	<0 for all x∈K, x �=0 it follows that

intL⊂K\
0�. Let L′ be a convex closed cone such that

intL⊃L′ \
0�⊃ intL′ ⊃K\
0��

Then p�x	<0 for all x∈L′, x �=0. Let x∈ s̄−L′, x �= s̄ that is, x= s̄+u with
u∈−L′, u �=0. Then p�x	<p�s̄	. This means that s̄∈MinL′S, hence s̄ is a properly
minimal element of S. �

Remark 6.2. If the space X in Proposition 6.2 is separable then there exists a
sublinear continuous function p such that p�x	<0 for all x∈−K, x �=0. Indeed,
it is well-known that in this situation there exists a linear continuous function l
such that l�x	>0 for all x∈K, x �=0. Since pu�K with u∈ intK enjoys the property
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p�x	�0 for all x∈−K, it follows that p�x	 �=pu�K�x	−l�x	<0 for all x∈K,
x �=0.

Remark 6.3. An analogue of Proposition 6.2 does not hold for nonconvex cones
K∈��X	.

7. Vector Optimization

In this section we consider some problems of vector optimization. For the sake of
definiteness we consider only problems related to the weak minimality. Corres-
ponding results can be easily extended to the case of minimal and properly
minimal points. Let X be a metric space and Y , Z be Banach spaces. Let K∈��Y 	
and L∈��Z	. Consider mappings F � X→Y and G� X→Z and the following
problem P�F�G	: to find a weakly optimal point of the set S �=F�X0	 where

X0=
x� G�x	�L 0� (7.1)

We shall present this problem in the following form:

W−MinKF�x	 subject to G�x	�L 0� (7.2)

We consider two ways of scalarization of P�F�G	.

(1) Let x̄∈X0 be a solution of (7.2), that is s̄ �=F�x̄	 is a weak minimal point
of S=F�X0	. Assume that s̄∈U�K	, otherwise we can replace S with z+S
where z∈−s̄+U�K	. Consider the function fs̄�x	=ps̄�K�F �x		 and the problem
of scalar minimization

minfs̄�x	 subject to x∈X0� (7.3)

It follows from Proposition 5.1 that x̄ is a solution of this problem. Indeed, due
to this proposition we have

fs̄�x̄	=ps̄�K�F �x̄		=ps̄�K�s̄	=min
s∈S

ps̄�K�s	

=min
x∈X0

ps̄�K�F �x		=min
x∈X0

fs̄�x	� (7.4)

We can present Problem (7.3) as the usual mathematical programming problem
if we express the set X0 of feasible elements as the set of solutions of a sys-
tem of inequality constraints. Since the solution set of an arbitrary system of
inequalities ht�x	�0�t∈T	 is also the solution set of a single inequality h�x	�0
(for example, we can consider h�x	=supt∈T ht�x		 we express X0 as the solution
set of a single inequality. We can use for this purpose the function pv�L where
v∈U�L	. Let gv�x	=pv�L�G�x		. Then the inequality G�x	�L 0 is equivalent to
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gv�x	�0 and problem (7.3) is equivalent to the following problem P�fs̄�gv	 of
mathematical programming with a single constraint:

minfs̄�x	 subject to x∈X�gv�x	�0 (7.5)

THEOREM 7.1. Consider Problem P�F�G	 and an element x̄∈X such that
s̄=F�x̄	∈U�K	. Then the following assertions are equivalent:

(1) x̄ is a solution of P�F�G	;
(2) x̄ is a solution of P�fs̄�gv	, where s̄=F�x̄	, fs̄�x	=ps̄�K�F �x		 and gv�x	=

pv�L�x	 with an arbitrary v∈U�L	.

Proof. We need to prove only �2	
⇒�1	. Let x̄ be a solution of P�fs̄�gv	.
Then due to the definition of fs̄ and gv we have ps̄�K�s̄	=min
ps̄�K�s	� s∈F�X0	�.
Applying Proposition 5.1 we deduce that s̄∈W-MinF�X0	. �

2. Let x̄ be a solution of P�F�G	. Let u be an arbitrary element of U�K	.
Consider a function f̃x̄�u�x	=pu�K�F�x	−F�x̄		 and a function g�x	=pv�LG�x	
with an arbitrary v∈U�L	. The following result follows directly from Proposition
5.2.

THEOREM 7.2. Consider Problem P�F�G	 and an element x̄∈X. Then the
following assertions are equivalent:

(1) x̄ is a solution of P�F�G	;
(2) x̄ is a solution of P�f̃x̄�u�gv	, where u, v, f̃x̄�u and gv as above.

Sometimes it is convenient to have a scalar optimization problem P�f �g	 with
the positive objective function f . We shall consider only optimization problems
P�F�G	 such that for each x̄∈X0 the set 
F�x	−F�x̄	� x∈X0� is bounded from
below in the sense of K. This means that there exist y∈Y such that F�x	−
F�x̄	�K y for all x∈X0. Let u∈U�K	. Due to Proposition 2.1 there exists �∈�
such that F�x	−F�x̄	�K �u for all x∈X0, hence pu�K�F�x	−F�x̄	��. Since
x̄∈X0 it follows that ��0. Let

f̂x̄�u�x	=max�pu�K�F�x	−F�x̄		−��0	+1� x∈X (7.6)

Clearly infx∈X f̂x̄�u�x	�1. We also have for x∈X0:

f̂x̄�uu�x	=pu�K�F�x	−F�x̄		−�+1= f̃x̄�u�x	−�+1�

Hence problems P�f̃x̄�u�gv	 and P�f̂x̄�u�gv	 are equivalent in the sense that both
of these problems have the same set of local and global minima. Applying
Theorem 7.2 we conclude that the following result holds.

THEOREM 7.3. Consider problem P�F�G	 and an element x̄∈X. Assume that
the set 
F�x	−F�x̄	� x∈X0� is bounded from below and consider the function
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f̂x̄�u defined by (7.6) and the function gv with v∈U�L	. Then the following
assertions are equivalent:

(1) x̄ is a solution of P�F�G	;
(2) x̄ is a solution of P�f̂x̄�u�gv	.

Theorems 7.1, 7.2 and 7.3 reduce problem P�F�G	 to scalar optimization
problems and we can use some known duality results for scalar optimization for
examination of P�F�G	.

8. Scalar Duality

A dual theory based on nonlinear penalization has been recently developed for
scalar optimization problems with a single constraint. (See [10], Chapter 4 and
references therein.) We present here some results of this theory.
We need the so-called IPH (increasing positively homogeneous) functions

h� �2
+→�, where �2

+=
z=�z1�z2	∈�2� z1�0�z2�0�. A function h� �2
+→�

is called IPH if h is increasing with respect to coordinate-wise order relation
and positively homogeneous of degree one: h��z	=�h�z	 for x∈�2

+ and �>0.
Denote by � the class of IPH functions h such that

h�1�0	=1� lim
z2→+�

h�1�z2	=+��

Consider a problem P�f �g	 �

minf �x	 subject to g�x	��0 (8.1)

where f �g� X→� and X is a metric space. We assume that infx∈Xf �X	>0.
This assumption is not very restrictive (see the discussion in [10], Chapter 3).
Let h∈�. The function L+

h �x�d	 defined by

L+
h �x�d	=h�f �x	� dg+�x		� x∈X� d∈�+ (8.2)

is called the penalty-type function of P�f �g	 generated by h. Here g+�x	=
max�g�x	�0	��+=
x∈�� x�0�. If h1�z1�z2	=z1+z2 then L+

h1
coincides with

the classical penalty function: L+
h1
�x�d	=f �x	+dg+�x	. Using the penalty-type

function L+
h with h∈� we can define the dual function qh�d	 and the dual

problem Dh�f �g	. By definition

qh�d	= inf
x∈X

L+
h �x�d	≡ inf

x∈X
h�f �x	� dg+�x		�

Dual problem Dh�f �g	 has the form

sup
d�0

qh�d	≡sup
d�0

inf
x∈X

h�f �x	� dg+�x		 (8.3)
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If h∈� then the weak duality property holds: supd>0qh�d	� infx∈X0
f �x	 where

X0=
x∈X� g�x	�0�. The following questions are of interest:

(1) When the zero duality gap property holds, that is, supd>0qh�d	= infx∈X0
f �x	?

(2) When does the exact parameter d̄ exist? (A number d̄ is the exact parameter
if qh�d̄	= infx∈X0

f �x	).

It follows from Theorem 8.1 below that the zero duality gap property depends
only on problem P�f �g	 and does not depend on the exogenous funcions h.
However the existence of an exact parameter heavily depends on h. This is
the main reason for examination of penalty-type functions with h∈�. Here we
consider only the zero duality gap property. The technique that is used here can
also applied for examination of exactness: many results from [10] related to the
exact parameters can be transformed for vector optimization.
For examination of the zero duality gap property we need the perturbation

function B of P�f �g	. By definition,

B�t	= inf
f �x	� g�x	� t�� t�0� (8.4)

THEOREM 8.1 (see [10] and references therein). Let h∈�. Consider prob-
lem P�f �g	 such that infx∈Xf �x	>0. Then the zero duality gap property
supd>0qh�d	= infx∈X0

f �x	 holds if and only if the perturbation function B of
P�f �g	 is lower semicontinuous at the origin.

We now come back to problem P�F�G	 defined by (7.2). For the sake of
definiteness we use only the second approach to the scalarization of this problem.
Let u∈U�K	 and v∈U�L	. Let x̄∈X. Assume that the set 
F�x	−F�x̄	� x∈X0�
is bounded from below by K and consider problem P�f̂x̄�u�gv	 where f̂x̄�u is
defined by (7.6):

f̂x̄�u�x	=max�pu�K�F�x	−F�x̄		−��0	+1� x∈X�

where � is a number with the property F�x	−F�x̄	�K �u for all x∈X0.
Let h∈�. Then the function

L+
h �x�d	=h�f̂x̄�u�x	�dgv�x		� x∈X�d�0

is called the penalty-type function of the problem P�F�G	 corresponding to x̄�u,
v and h. The function

qx̄�u�v�h�d	= inf
x∈X

h�f̂x̄�u�x	�dgv�x		� d�0

is called the dual function of P�F�G	 corresponding to the totality (x̄�u�v�h) and
the problem Dx̄�u�v�h�F �G	:

supqx̄�u�v�h�d	=sup
d�0

qx̄�u�v�h�d	≡sup
d�0

inf
x∈X

h�f̂x̄�u�x	�dgv�x		
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is called the dual problem of P�F�G	 corresponding to this totality.

THEOREM 8.2. Consider problem P�F�G	. Let x̄∈X be a point such that the set

F�x	−F�x̄	� x∈X0� is bounded from below. Let u∈U�K	�v∈U�L	 and h∈�.
Assume that the perturbation function B of P�f̂x̄�ugv	 is lower semicontinuous at
the origin. Then x̄ is a solution of P�F�G	 if and only if

sup
d�0

inf
x∈X

h�f̂x̄�u�x	�dg
+�x		=−�+1 (8.5)

Proof. It follows from Theorem 8.1 that

sup
d�0

inf
x∈X

h�f̂x̄�u�x	� dg+�x		= inf
x∈X0

f̂x̄�u�x	= inf
x∈X0

f̂x̄�u�x	 (8.6)

Due to (7.6) we have f̂x̄�u�x	=pu�K�F�x	−F�x̄		−�+1 for x∈X0. Let x̄ be a
solution of P�F�G	. Applying Theorem 7.3 we conclude that x̄ is a solution of
P�f̂x̄�ugv	, hence

inf
x∈X0

f̂x̄�u�x	= inf
x∈X0

pu�K�F�x	−F�x̄		−�+1=�+1�

It follows from (8.6) that (8.5) holds. Assume now that (8.5) is valid. Combin-
ing (8.5) and (8.6) we deduce that

inf
x∈X0

f̂x̄�u�x	=−�+1= f̂x̄�u�x̄	�

Hence x̄ is a solution of P�f̂x̄�ugv	. Applying again Theorem 7.3 we conclude that
x̄ is a solution of P�F�G	. �

In order to give sufficient conditions for lower semicontinuity of the perturba-
tion function, we need to express this function in terms of the problem P�F�G	.

PROPOSITION 8.1. Let B be the perturbation function of P�f̂x̄�ugv	. Then

B�t	= inf
x� G�x	∈tv−L

max�pu�K�F�x	−F�x̄	−��0	+1	�

Proof. We have for t>0:

B�t	= inf
x� gv�x	�t

f̂x̄�u�x	= inf
x� pv�L�G�x		�t

f̂x̄�u�x	�

Due to Proposition 3.1 we have pv�L�G�x		� t⇐⇒G�x	∈ tv−L, hence

B�t	= inf
x� G�x	∈tv−L

max�pu�K�F�x	−F�x̄	−��0	+1	� �
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Consider the set-valued mapping D� �+→2X defined by D�t	=
x� G�x	∈
tv−L�. Note that D�0	=X0. We assume that D is upper semicontinuous at the
origin that is for each ->0 there exists C>0 such that D�t	⊂
x∈X� d�x�X0	<
-� for all f ∈ �0�C	. Here d�x�X0	= infx0∈X0

d�x�x0	 and d�x�x0	 is the distance
between x and x0 in the metric space X.

PROPOSITION 8.2. Let the mapping D is upper semicontinuous at the origin
and the function f̂x̄�u is uniformly continuous on the set X0. Then the perturbation
function B is lower semicontinuous at the origin.

Proof. It follows from properties of f̂x̄�u and D that for each �>0 there exists
->0 such that d�x�x′	<- implies �f �x	−f �x′	�<� and there exist C>0 such
that t∈�0�C	 implies

D�t	=
x� G�x	∈ tv−L�⊂
x� d�x�X0	<-�

Let t∈�0�C	 and let x′ ∈D�t	 be a point such that f �x′	< infx∈D�t	f �x	−�. Then
for the point x′ ∈D�t	 there exists x0∈X0 such that d�x′�x0	<-. It follows from
the definition of - that �f �x′	−f �x0	�<�. Hence

B�t	− inf
x∈D�t	

f �x	�f �x′	+��f �x0	+2�� inf
x∈X0

f �x	+2�=B�0	+2�� �

Remark 8.1. The uniform continuity of f̂x̄�u follows from uniform continuity
of both F and pu�K . Note that the function pu�K is uniformly continuous if K is a
finite unit of convex closed cones Ki with the nonempty intersection of interiors
of Ki.

Remark 8.2. If the set D�t	 is compact for some t>0 then the lower semicon-
tinuity of the perturbation function B follows from the lower semicontinuity of
f̂x̄�u and lower semicontinuity of gv. We omit the simple proof of this assertion.
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